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Abstract 

The dynamic EVT-based GARCH model has evolved as a preferred approach in the 

estimation of value-at-risk (VaR), in global financial institutions. Sophisticated risk models 

also require full information, however, the traditional standard dynamic VaR model failed to 

account for an important nature of return volatility driven by asymmetric volume changes in 

the financial markets. The main objective of this study is to investigate whether an 

incorporation of trading volume improve the accuracy in the estimation of VaR in future 

markets. 

Using alternative dynamic EVT-based GARCH family VaR models including GARCH, 
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GJR and EGARCH, over the period from Jan. 1997 to Dec. 2001, the study examine VaRs of 

three major US futures markets, NASDAQ INDEX, S&P 500 INDEX and NATURAL GAS. 

Consistent with our a-priori expectation, the finding indicates that the proposed alternative 

dynamic EVT-based GARCH family VaR models with volumes, in general, outperform 

traditional dynamic EVT-based VaR models. In particular, GJR+GPD+V is the best model 

among the others in terms of both rate of violation and RMSE. 
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Ⅰ. Introduction 

In recent years, a string of financial failures resulted from inappropriate overwhelming 

speculation on derivatives and lack of sufficient internal controls have raised considerable 

concern of market risks among regulators, financial institutions, financial analyst and other 

participants in the financial markets. For example, in December 1994, Orange County in U.S. 

had suffered a ever recoded loss of US$1.6 millions attributed to the unsupervised investment 

of its treasurer in derivatives securities. In February 1995, a U.K. merchant bank, Barings, was 

forced into insolvency as a result of huge losses of US$1.3 billions on its trading in Nikkie 

stock index future in Japan. In September 1995, a similar incident took place at New York 

branch of Daiwa Bank resulted from futures trading. In 1997, Eastern Europe and Asia also 

encountered considerable currency and financial market volatility. This volatility was further 

magnified throughout 1998 with large losses on Russian bonds as the Russia’s ruble 

depreciated and the price of Russian bonds collapsed. That volatility had forced many large 

U.S. banks to write off hundred millions of dollars losses on holding Russian government 

securities.  

In response to the above financial disasters, Bank of International Settlement (BIS) 

revised Basel Accord I in 1998 and required all financial institutions report market risks of 
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their portfolios and impose capital charges accordingly to restrict the finical institutions from 

over risk-taking. Subsequently, BIS encourages financial institutions to develop more 

sophisticated tailor-made model of measuring risks in Basel accord II 2006. The market risk is 

commonly refereed as value change resulting from a change in price, interest rate, market 

volatility and market liquidity. It can be formally defined as value-at-risk (VaR) which 

measures the expected maximum loss (or worst loss) over a target horizon within a given 

confidence interval. The methods to estimate the VaR can be categorized into parametric and 

non-parametric. Initially, the most popular model was Riskmetric developed by J. P. Morgan 

Stanley 1994 because of easy use. This traditional variance-covariance-based VaR model, 

however, fails to account for two important natures of return series: stochastic volatility and 

fat-tail distribution. More specifically, the traditional method is focused on the confidence 

interval rather than tail probability of financial return series. Financial literature has well 

documented that return series in the financial markets are stochastic and fat-tail distributed in 

nature (Bollerslev ,1986; Bollerslev and Wooldridge, 1992; Bollerslev et al., 1992; Diebold et 

al., 2000). In fact, risk managers are more concerned with the tail behaviors of market returns. 

Mathematically, extreme value theory (EVT) approach holds promise for more accurate 

capturing the extreme quintiles and tail probabilities of financial return series. Nevertheless, 

traditional EVT techniques assume that finical asset return is independent and identified, and 

hence fails to account for the other behavior of the asset return series, dynamic clustering of 

asymmetric stochastic volatility (Diebold et al., 2000; McNeil and Frey, 2000). On the other 

hand, ARCH/GARCH family models are well recognized as a successful method in capturing 

the stochastic volatility (Bollerslev ,1986；Bollerslev and Wooldridge, 1992; Bollerslev et al., 

1992; Nelson, 1991; Koutmos and Booth, 1995). After the pioneer work of McNeil (1997, 

1998) and McNeil and Frey (2000) in the finical risk management, the EVT-based dynamic 

GARCH model has evolved as a preferred approach in the estimation of VaR (McNeil and 

Frey, 2000; Longin, 2000; Bystrom, 2004; Gencay and Selcuk, 2004; Fernandez, 2005). Yet, 

previous works ignore the possible correlation between the financial asset return and trading 

volume. Numerous financial studies have well documented this important relationship. Clark 
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(1973) and Epps and Epps (1976) suggested that trading volume is a good proxy for 

information arrival from the capital market. The hypothesis has been further supported by 

empirical evidence; Lamoureux and Lastrapes (1990), Kim and Kon (1994), Andersen (1996), 

Gallo and Pacini (2000) found the same effect for the U.S. stock market; Omran and McKenzie 

(2000) observed this effect for the U.K. stock market; Bohl and Henke (2003) reported similar 

evidence for the Polish stock market.  

Ying (1966) was the first to provide strong empirical evidence supporting an asymmetric 

relation between trading volume and price-change. By investigating six series of daily data 

from NYSE, Ying made the following conclusions: a small trading volume is usually 

accompanied by a fall in price; a large volume is usually accompanied by a rise in price; and a 

large increase in volume is usually accompanied by either a large rise in price or a large fall in 

price. This hypothesis is also documented by Karpoff (1987) in an extensive survey of research 

into the relationship between stock–price change and trading volume. Karpoff suggests several 

reasons why the volume–price change relationship is important and provides evidence to 

support the asymmetric volume–price change hypothesis. His asymmetric hypothesis implies 

that the correlation between volume and price change is positive when the market trend is 

going up, but that this correlation is negative when the market trend is downwards. This is 

again important and highlights that we should not simply add a linear exogenous volume term 

to the mean equation in a GARCH model for stock returns. To capture the possible nonlinearity 

we will also consider an asymmetric linear relationship between price (return) and volume, as 

can be captured by GJR GARCH and EGARCH models. 

Departing from traditional work that focused on the contemporaneous relation between 

return and trading volume, Chordia and Swaminathan (2000) examine the causal relationship 

and the predictive power of trading volume on the short-term stock return. Their empirical 

evidence suggests that volume plays a substantial role in the dissemination of national 

market-wide information. In a dynamic context, Lee and Rui (2002) utilize the GARCH(1,1) 

model to investigate the relationship between stock returns and trading volume using the New 

York, Tokyo and London stock markets. Their empirical results suggest that U.S. financial 

market variables, in particular US trading volume, have extensive predictive power in both the 
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domestic and cross-country markets, after the 1987 market crash.  

Similarly, the asymmetric price change and trading volume relationships also documented 

by an extensive study in the derivative literature (Cooper, 1999; Fung and Patterson 1999; Lee 

and Swaminanthan, 2000; Bessembinder and Seguin, 1992; Locke and Sayers, 1993; Moosa et 

al., 2003). In particular, Fung and Patterson (1999) utilize vector autoregressive analysis to 

examine the relationship of volatility, volume and market depth, and the direction and speed of 

the information flow between variables in five currency futures markets. The finding suggests 

that the return volatility is subject to strong reversal effects form trading volume and market 

depth. In addition, Moosa et al. (2003) employ a bivariate VaR model and find significant 

mean level asymmetry in the price–volume relationship for the future market in crude oil prices; 

they did not consider a heteroscedastic model and they enforced the threshold variable to be 

zero. Aside from the above empirical evidences on the importance of adding trading volume in 

volatility models based on the market structure of the classical financial literature, the rational 

of inclusion such trading volume in our conditional volatility models may also stems from the 

recent behavioral financial literature. Trading volume is an indicator of momentum or 

sentiment across irrational trader and rational traders and hence is an influential factor to the 

conditional volatility modeling. (For details, please see McMillan, 2007). The above findings 

further reinforce our belief that a consideration of trading volume as an explanatory variable 

might not only add to the understanding of derivatives market behavior in general but improve 

the accuracy in the estimation of market risk in particular.  

The objective of this study is to investigate whether an incorporation of trading volume 

improve the accuracy in the estimation of VaR in future markets. Consistent with our a-priori 

expectation, our results indicates EVT-based GARCH family VaR models with volumes, in 

general, outperform the standard dynamic VaR model and shed the light on the use of trading 

volume as determinant of dynamic VaR in Futures market.  

The remainder of this study proceeds as follows. Section 2 describes the experiment 

design including the methods and model specifications used in this paper . Section 3 presents 

an evaluation of alternative models via backtestings. The paper concludes with a summary 

analysis of the findings in section 4.   
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II. Methodology  

In the risk management literature, McNeil and Frey (2000) provide an extensive study on 

the EVT-based models which have been developed to model the tail distribution of financial 

asset returns. They conclude that traditional EVT-based works by Longin (1997, 2000), 

McNeil and Saladin (1997) and McNeil (1998) failed to account for the stochastic volatility 

effect and suggest that a combination of EVT-based model with GARCH family in a dynamic 

framework will be provide more accurate estimation on the VaR of financial assets. More 

specifically, McNeil and Frey (2000) filter return series via GARCH model and then utilize a 

threshold-based EVT technique to estimate VaR in the extreme return series. Recently, 

Bystrom (2004) expend McNeil’s study by adding one extra dimension, the Block Maxima 

method, to model the tail return distribution and generate similar result. Following Bystrom 

(2004), we adopt two-stage estimation procedure to estimate the dynamic VaR. In the first 

stage, we filters different financial time series with a GARCH model. More specifically, the 

study fits a GARCH-type model to the return data by maximum likelihood. That is, maximize 

the log-likelihood function of the sample assuming normal innovations; finally, we consider 

the standardized residuals computed in stage 1 to be realizations of a white noise process, and 

estimate the tails of innovations using EVT. In particular, we extend the previous work by 

adding the GJR and EGARCH models to account for asymmetric conditional volatility effect. 

Furthermore, we formulate the above models adding trading volume as an explanatory variable 

in the estimation of VaR. The empirical process of this study is presented in the following 

subsections. 

A. GARCH-type models 

In the investment literature, there are several different approaches have been utilized to 

model financial asset returns. Following the pioneer work of Engle (1982); Bollerslev (1986); 

Bollerslev and Wooldridge (1992); Bollerslev et al., (1992), the GARCH class model has 

become a superior model in assessing the stochastic volatility of financial instruments. The 
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most successful and popular among the others is the GARCH family model with 

AR-GARCH(1,1) specification (Engle, 1982; Bollerslev, 1986; Gerlach et al., 2006). This 

popularity is also the motivation behind our choice of GARCH as representing a parametric 

model for filtering stock returns. As opposed to the EVT-based models described above, 

GARCH models do not focus directly on the returns in the tails. Instead, GARCH models 

explicitly model the conditional volatility as a function of past conditional volatilities and 

returns.  

The conditional volatility can be estimated by either a univariate volatility model (single 

index model as McAleer and da Veiga, 2008a, 2008b), or a multivariate volatility model. The 

study adopts the univariate formulation in all of our conditional volatility models for two 

reasons. First of all, the performance of the two models in forecasting the VaR threshold of 

financial assets is still inclusive. Moreover, McAleer and da Veiga (2008a, 2008b) did a 

comprehensive empirical study on such issue and suggest that the VaR forecasts are generally 

found to be insensitive to the inclusion of spillover effects in any of their multivariate models 

considered. Second, The parsimonious nature of a conditional volatility model is very 

important to the practitioners (For details please see McAleer and da Veiga, 2008a).   

For parsimonious, we adopt standard univariate GARCH(1,1) model to capture the 

stochastic return volatility of the underlying assets. The AR-GARCH(1,1) model can be 

defined as follow: 

 
 0 1 1t t tr rα α ε−= + +  

 2
1 1t t th hω αε β− −= + +   (1) 

 
where, residual 2

1| ~ (0, )t t tNε σ−Ω  with mean = 0, Variance 2
tσ= , th  is the conditional 

variance at time t, and tΩ  is the information set of all information through time t. Whereas, 

0 1,α α , α  and β  are parameters to be estimated. When the AR-GARCH model in Eq. (1) 

has been fitted to data by maximization of the likelihood function, one can estimate (or forecast) 

dynamic VaRp measures by assuming either the normal distribution or the t distribution, 
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multiplying one's estimates (or forecasts) of tσ  with the standard quantiles of each 

distribution, and finally adding the conditional mean. As cited by previous literature, in 

comparing to the unconditional EVT-based methods described earlier, the AR-GARCH models 

have the advantage of producing time varying VaRp measures (Engle, 1982; Bollerslev, 1986; 

Diebold et al., 2000; Gerlach et al., 2006). Yet, the recent literature further suggest that the 

return series of current financial markets tends to have not only volatility clustering behaviors 

but also asymmetric response to the positive and negative shocks (Nelson, 1991; McAleer, 

2005; Gerlach et al., 2006; McAleer et al., 2007). Following the novel work of GARCH model 

by Bollerslev (1986), therefore, a substantial development of extensions on GARCH family 

models are proposed (McAleer et al., 2007). The most popular extensions are the two 

asymmetric models, GJR and EGARCH models. McAleer et al. (2007) presents a 

comprehensive discussion on the similarities and differences among the two extensions and 

GARCH formulation. According to this literature, the major differences of the three models are 

on the restriction of response of volatility to positive and negative shocks. Standard GARCH 

imposes a symmetric response of volatility to the positive and negative shocks, while the latter 

two formulations accommodate the existence of asymmetric volatility to capture the possible 

asymmetric response of positive and negative shocks (details as the comprehensive discussion 

on the theoretical results of GARCH family models by McAleer et al., 2007). In fact, more 

financial literature has well-documented that the asymmetric type GARCH model provides 

better estimation of conditional volatility (Nelson, 1991; Gerlach et al., 2006; McAleer et al., 

2007; McAleer and da Veiga, 2008a, 2008b). The nature of possible asymmetric response to 

the positive and negative shocks in the financial asset has been ignored in the previous 

EVT-based VaR models. This study fills in the gap by adding two asymmetric type GARCH 

models, GJR and EGARCH.   

The model specifications of asymmetric GARCH models are addressed in the following 

subsections. In GJR framework, the effects of positive shocks (or upward movements in the 

patent share) on the conditional variance, ht, are assumed to be the same as the negative shocks 

(or downward movements in the patent share) in the symmetric GARCH model. In order to 
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accommodate asymmetric behaviour, Glosten et al. (1992) proposed the GJR model, for which 

GJR(1,1) is defined as follows:  

 
 2

1 1 1( ( ))t t t th I hω α γ η ε β− − −= + + +   (2) 

 
where ω > 0, 0α ≥ , 0α γ+ ≥ , 0β ≥  are sufficient conditions for ht > 0, and I(ηt) is an 

indicator variable defined by 
 

 
1,     0

( )
0,     0

t
t

t

I
ε

η
ε

<= 
≥

 

 
as tη  has the same sign as tε . The indicator variable differentiates between positive and 

negative shocks, so that asymmetric effects in the data are captured by the coefficient γ , with 

0γ ≥ . The asymmetric effect, γ , measures the contribution of shocks to both short run 

persistence, / 2α γ+ , and to long run persistence, / 2α β γ+ + . 

As for the alternative asymmetric volatility in the conditional variance, the Exponential 

GARCH (EGARCH(1,1)) model of Nelson (1991), can be formulated as   

 
 1 1 1log logt t t th hω α η γη β− − −= + + + , | | 1β <   (3) 

 
According to McAleer et al. (2007), there are five distinct differences between EGARCH 

and the previous two GARCH models: (1) EGARCH is a model of the logarithm of the 

conditional variance, which implies that no restrictions on the parameters are required to ensure 

ht > 0; (2) | | 1β < ensures stationarity and ergodicity for EGARCH(1,1); (3) | | 1β < is likely 

to be a sufficient condition for consistency of quasi maximum likelihood estimation (QMLE) 

for EGARCH(1,1); (4) | | 1β < would seem to be a sufficient condition for the existence of 

moments as the conditional (or standardized) shocks appear; (5) in addition to being a 

sufficient condition for consistency, | | 1β <  is also likely to be sufficient for asymptotic 
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normality of the QMLE of EGARCH(1,1). Furthermore, EGARCH captures asymmetries 

differently from GJR. The parameters α  and γ  in EGARCH(1,1) represent the magnitude 

(or size) and sign effects of the conditional (or standardized) shocks, respectively, on the 

conditional variance, whereas α  and α γ+  represent the effects of positive and negative 

shocks, respectively, on the conditional variance in GJR(1,1). Furthermore, as our a-priori 

expectation from theoretically ground stated and substantial empirical evidences discussed in 

the introduction of this study, an incorporation of trading volume into the traditional 

EVT-based VaR models might improve the accuracy in estimating VaRs. Therefore, we 

include volume and logarithms of volume as an explanatory variable, denoted as V and log V, 

into GARCH, GJR and EGARCH model equations to examine such effect, respectively. For 

example, the conditional variance equation of alternative GARCH model, GJR model and 

EGARCH model can be formulated in the equation (4) through (6), respectively.  

 
 2

1 1t t t th h Vω αε β δ− −= + + +    (4) 

 
 2

1 1 1( ( ))t t t t th I h Vω α γ η ε β δ− − −= + + + +  (5) 

 
 1 1 1log log logt t t t th h Vω α η γη β δ− − −= + + + + , | | 1β <   (6) 

 
Follow Bystrom (2004), we scale our unconditional EVT-based tail estimates with the 

expected return and volatility. Than, we obtain the forecasts of tail risks that are conditional on 

the actual market conditions. Thus, after the standardize residual, tη , from the AR-GARCH 

model in the first stage in Eq. (1) and the residual distribution quantiles, pα , ar obtained, we 

can calculate the forecasted VaRp quantiles of our return distribution tomorrow as 

 
 1, 0 1 1t p t t pVaR rα α σ α+ += + +   (7) 

 
where 0 1 trα α+  is the conditional mean and 1tσ +  is the GARCH forecast of tomorrow's 
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conditional volatility.  Note that the major advantage with first filtering the returns is to obtain 

IID series which can straightforward to apply the EVT technique. Yet, it is common in the 

finance literature to apply the EVT technique to financial return series that are known to be 

non-IID (McNeil and Frey, 2000; Bystrom, 2004).  

B. Modeling the tails of sample return distributions 

Traditional methods to estimate the tail distribution under EVT theory can be divided into 

two groups: the peaks over threshold (POT) method which looks at those events in the data that 

exceed a high threshold, and block maxima method (BMM) which divides the data into 

consecutive blocks and focuses on the series of maxima (or minima) in these blocks 

(Embrechts et al., 1997; Kellezi and Gilli, 2000; McNeil, 1998; Bystrom, 2004). Bystrom 

(2004) suggests that both BMM and POT generate similar results in estimating and forecasting 

both conditional and unconditional VaR. Nerveless, BMM requires long histories for 

estimation. Therefore, this study adopts POT method to estimate the underlying VaRs.   

Under POT method, we collect those returns in the sample series that exceed a certain 

high threshold, u, and model these returns separately from the rest of the distribution. Note that 

the choice of threshold value, u, is the most important implementation issue in the estimation 

of EVT. McNeil and Frey (2000) set 10% as the value of threshold, u, after a careful simulation. 

Following the study, we set 10% as our threshold value in our empirical implementation at 

backtesting stage.  

As Bystrom (2004), we define a daily return in our data series as R and assume that it 

comes from a distribution FR. The returns above the threshold u then follow the excess 

distribution Fu(y) that is given by  

 

 
( ) ( )

( ) (R- y  R )
1 ( )

R R
u

R

F u y F u
F y P u u

F u
+ −

= ≤ > =
−

, 0 Fy R u≤ ≤ −   (8) 

where y is the excess over u, and RF is the right endpoint of FR. If the threshold, u, is high 

enough, Balkema and de Haan (1974) and Pickands (1975) show that for a large class of 

distributions, FR, the excess distribution, Fu(y), can be approximated by the so-called 
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generalized Pareto distribution (GPD), which can be formulated as  

 
 ,

0
lim sup ( ) ( ) 0

F
uu y R u

F y G yξ β↑ ≤ ≤ −
− =   (9) 

 

 
1

, ( ) 1 (1 )G y y
ξ

ξ α
ξ
α

−

 = − +  
, if 0ξ ≠  

           , ( ) 1
y

G y e α
ξ α

−

= − , if 0ξ =    (10) 

 
for 0 ≤ y ≤ RF − u. ξ is the tail index and for the fat-tailed distributions found in finance, one 

can expect a positive ξ. α  is just a positive scaling parameter. Empirically, the tail index, ξ, 

as well as the scaling parameter, α , have to be determined by fitting the GPD to the actual 

data. These parameters are typically estimated via the maximum likelihood method: 

 
 ,max ( , ; ) max ln( ( ))G i

i
L y g yξ αξ α = ∑  (11) 

 

where 
11

,
1( ) (1 )g y y ξ

ξ α
ξ

α α

 
− + 
 = +  is the density function of the GPD distribution if 0ξ ≠  

and 1 / 0yξ α+ > . When the GPD distribution and its parameters are estimated, we continue 

by calculating VaRp quantiles of the underlying return distribution FR which can be written as 

 
 ( ) (1 ( )) ( ) ( )R R u RF u y F u F y F u+ = − +  (12) 

 
Note that FR(u) can be written as (n − Nu)/n where n is the total number of returns and Nu 

is the number of returns above the threshold u, and that Fu(y) can be replaced by Gξ,α (y) (as 

well as rewriting u + y as x), this expression can be simplified to 

 

 
1

( ) 1 1 ( )u
R

N
F x x u

n
ξξ

α

−
 = − + − 
 

  (13) 
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By inverting this expression, we get an expression for (unconditional) VaRp  quantiles 

associated with certain probabilities p: 

 

 1p
u

nVaR u p
N

ξ
α
ξ

−   = + −    
  (14) 

Ⅲ. Empirical Implementations and 
Backtesting 

To valid the appropriateness of alternative risk models in this study, we backtest the 

underlying models on the historical log return series of three major U.S. futures markets, 

Nasdaq Index future, S&P 500 Index future and Natural Gas future over the period from Jan. 

1997 to Dec. 2001. The plot of sample future indexes and their return series in Figure 1 to 3 

shows that an existence of stress, high volatility, in 2001 during the internet bubble. In our 

implementation, we follow McNeil and Frey (2000) and set 1000 daily returns for the 

estimation period, an approximation of 4- year duration, and reestimate the model with a 

one-day sliding window for the testing period from Jan. 2001 to Dec. 2001. More specifically, 

we reestimate the above various models using the past 1000 days’ returns. Using each of the 

estimates of the underlying models, we produce (1-day) VaRp forecasts for the following day.     

These VaRp forecasts are then compared to the actual return in the particular day. Several 

procedures can be utilized to valid the accuracy of an EVT-based VaR; however, for practical 

purpose, we adopt the way enacted by Basel Committee in 1998 (McNeil and Frey, 2000; 

Longin, 2000). The current verification procedure consists of recording daily violations of the 

99 percent VAR over the last year. More specifically, one would expect on average one percent 

of 250, or 2.5 instances of violations (or exception) over the last year (Jorion, 2002). An 

exception is said to occur when the actual loss is larger than the forecasted VaRp. Therefore, 

the number of exception is refers to as the number of days when the actual loss is larger than 
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the forecasted VaRp. The Basel committee has regulated that up to four exceptions are 

acceptable, which defines as green light zone with no corrective action. If the number of 

exceptions is five or more, the underlying financial institution falls into a yellow or red zone 

and is subject to progressive penalty.   
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Figure 1  Time Series and Return Series of Nasdaq Index future 
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Figure 2  Time Series and Return Series of S&P 500 INDEX future 
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Figure 3  Time Series and Return Series of NATURAL GAS future 
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To ensure the appropriateness of using GARCH family models, we perform a careful 

preliminary check on the characteristics of the returns in the sample futures markets. For 

comparison, key descriptive statistics including mean, medians, maximum, minimum, standard 

deviations, Skewness, Kurtosis, Jarqu-Bera test, results of Augmented Dickey Fuller (ADF) 

tests, and results of ARCH effect tests, for three sample return series are summarized in table 1. 

The kurtosis estimates of Nasdaq, S&P 500 and natural gas are 6.98, 5.82 and 6.07, 

respectively. This highlight that our sample returns are far from normal distributed. The 

P-values of Jarque-Bera normality tests for the three sample returns further confirm the 

non-normality at high level of statistical significance. The sample sleekness of Nasdzq and 

S&P 500 are −0.22 and −0.12, respectively. This indicates that the asymmetric tails extends 

more towards negative value than positive value. Overall, high excess kurtosis, high skewness 

and highly significant Jarque-Bera statistics evidently indicate the sample returns are not 

normaly distributed. The statistics of the ADF tests on the unit roots indicates that all of sample 

returns are stationary financial time series at highly statistical significant level.  Moreover, the 

statistics of the ARCH-LM test are 189.69, 71.76 and 35.88, for return series of Nasdaq, S&P 

50 and Natural gas, respectively. Their significant p-values show that the three sample returns 

present the volatility clustering behaviors and hence conclude that the usage of GARCH family 

model is appropriate. Finally, Table 2 reports the estimation of asymmetric terms in four 

asymmetric GARCH models. The estimates of all asymmetric volatility models, GJR and 

EGARCH, in the table are all highly significant at reasonable levels. This conclusion also 

further confirmed by the sign and bias test. This evidence further lends to the support of using 

GJA and EGARCH models in the study.   

For the tail estimation with POT method, tail index, ξ, is estimated by fitting GPD to the 

sample data. The results are presented in table 3. The estimated tail value ranges from 0.013 to 

0.021, 0.014 to 0.027, and 0.074 to 0.101, for Nasdaq, S&P 500 and Natural gas, respectively. 

These values are greater than zero and highlight that all of them are fat-tailed distributions. 

This reconfirms the appropriateness of our EVT-based approach.  
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Table 1  Descriptive statistics and diagnostics of the log daily returns 

Future Index NASDAQ  S&P 500 INDEX NATURAL GAS 
Mean 0.000551 0.000437 0.000630 

Median 0.001238 0.000478 0.000000 
Maximum 0.167013 0.058176 0.231148 
Minimum −0.115120 −0.074680 −0.167440 
Std. Dev. 0.022236 0.013517 0.038116 
Skewness −0.224135 −0.125803 0.237519 
Kurtosis 6.986243 5.822081 6.077583 

Jarque-Bera Test 1686.211  
(0.000)*** 

420.103   
(0.000)*** 

504.6574 
(0.000)*** 

ADF Unit Root Test −27.936   
(0.000)*** 

−36.276   
(0.000)*** 

−38.249   
(0.000)*** 

ARCH Effect Test 189.698   
(0.000)*** 

71.764    
(0.000)*** 

35.883    
(0.000)*** 

Notes: 1. P-values are in parentheses.  

2. ***, **and* indicate level of statistics at 1%, 5% and 10% respectively.  

 

Table 2  Estimation of asymmetric terms in alternative models 

Future Index NASDAQ S&P 500 INDEX NATURAL GAS 
EGARCH  −0.41400  (0.000)*** 0.83059  (0.000)*** 0.03773  (0.0293)** 
EGARCH + log V  0.06121  (0.000)*** 0.94071  (0.000)*** 0.98930  (0.000)*** 
GJR  0.06786  (0.000)*** 0.22965  (0.000)*** 0.00238  (0.0449)** 
GJR + V  0.93908  (0.000)*** 0.21660  (0.000)*** 0.89408  (0.000)*** 

Notes: 1. P-values are in parentheses.  

 2. ***, **and* indicate level of statistics at 1%, 5% and 10% respectively. 

 3. The sufficient condition for log-moment has been carefully checked and satisfied. 



−20−  Role of Trading Volume on the Estimation of Dynamic Extreme Value-at-Risk in Futures Markets 

(20) 

Table 3  Estimation of tail indices 

Future Index NASDAQ S&P 500 INDEX NATURAL GAS 
GARCH 0.02116 0.01949 0.10105 
GARCH + V  0.02162 0.01707 0.09383 
EGARCH  0.01311 0.02220 0.10148 
EGARCH + log V  0.01969 0.01469 0.07413 
GJR  0.01514 0.02663 0.09984 
GJR + V  0.01676 0.02733 0.09760 

Note: The sufficient condition for log-moment has been carefully checked and satisfied.  

 
Finally, the relative performance of each model with one 1-day at 99% quantize VaR are 

summarized as number of exceptions (or violations) in Table 4. All of our proposed alternative 

models outperform the traditional EVT-based GARCH model, GARCH + GPD, in two stock 

index future markets. Note that the number of exceptions is 4 for the traditional EVT-based 

GARCH model in all sample return series. This is fall into the yellow zone and might result 

into a penalty under the current Basel Accord. Therefore, the performance of traditional 

EVT-based GARCH model is relative poor in comparison to our alterative models. Especially, 

those models adding trading volume do improve the accuracy of in all sample markets. In 

particular, the asymmetric type GARCH models incorporation with trading volume, namely, 

GJR + GPD + V model provide the best estimate than the others in terms of violation ratios. 

The same conclusion also applies to the result based on accuracy of forecasting via RMSE in 

Table5. 
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Table 4  Number of exceptions of forecasted 1-day 99% VaRs 

Future Index NASDAQ S&P 500 INDEX NATURAL GAS 
GARCH + GPD 4 2 4 
EGARCH + GPD 2 2 4 
GJR + GPD 2 2 3 
GARCH + GPD + V 2 2 4 
EGARCH + GPD + log V 2 2 2 
GJR + GPD + V 2 1 2 

Table 5  RMSE(%) of forecasted 1-day 99% VaRs 

Future Index NASDAQ S&P 500 INDEX NATURAL GAS 
GARCH + GPD 4.98 3.99 4.33 
EGARCH + GPD 4.41 3.90 4.18 
GJR + GPD 4.24 3.96 4.13 
GARCH + GPD + V 4.17 3.91 4.21 
EGARCH + GPD + log V 3.89 3.65 4.09 
GJR + GPD + V 3.78 3.87 3.95 

Ⅳ. Summary and Conclusions 

Following the pioneer works of Diebold et al. (2000), McNeil and Frey (2000) and 

Longin (2000), the dynamic EVT-based GARCH family model has evolved as a favored 

approach in measuring the market risks in the risk management literature. On the other hand, 

trading volume has well-documented as a important determinant in the assets pricing literature. 

Nerveless, previous works in the estimation of market risk ignore the importance and fail to 

account for the variable in the risk valuation process. The objective of this study is to formulate 

alterative models which adding trading volume as an explanatory variable in variance 

equations. In particular, this study extends previous works in two ways: (1) adding asymmetric 
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GARCH family models to account for the possible asymmetric volatility effects; (2) departing 

from the traditional EVT-based GARCH family frameworks, this study formulate models that 

account for the trading volume of futures market. Our empirical implementation proceeded in 

two-stages. First of all, GARCH family models are established to filter the three sample return 

series in three U.S. major future markets. Second, we consider the standardized residuals 

computed in stage 1 to be realizations of a white noise process, and estimate the tails of 

innovations using POT. 

Using alternative dynamic EVT-based GARCH family VaR models including GARCH + 

GPD + V, GJR + GPD + V and EGARCH + GPD + V, over the period from Jan. 1997 to Dec. 

2001, the study examine the value at risk of three major U.S. futures markets, NASDAQ 

INDEX, S&P 500 INDEX and NATURAL GAS.  Consistent with our a-priori expectation, 

the finding indicates that the proposed alternative dynamic EVT-based Asymmetric GARCH 

model; in general, outperform the traditional standard dynamic EVT-based GARCH type VaR 

model. Moreover, an incorporation of trading volume in the model improve the accuracy of 

VaR estimation. In particular, GJR + GPD + V is the best model among the others in terms of 

both rate of violation and root mean square errors (RMSE). 
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交易量在估計期貨市場動態極端 
風險值的角色* 

黃明祥**、楊永列***、黃憲彰****、陳俊儒***** 

摘  要 

晚近，動態極值理論基礎 (dynamic EVT-based) 的 GARCH 族群模型已逐漸成為全

球主要金融機構在估計其持有資產部位市場風險值 (value-at-risk, VaR) 之較為偏好採用

之模型。不過再精緻之模型在實際運用上仍有賴於充份之資訊；依混合分配假說 (mixture 

distribution hypothesis) 之內涵，交易量 (trading volume) 具有資訊到達(information arrival) 

之功能，因此在理論上，金融資產之交易量可能與報酬波動性具有顯著關聯。然而，現

行常用之動態極值風險值模型怠於將金融市場由不對稱交易量變動所引發的報酬波動性

納入考量。據此，本研究之目的旨在探討將交易量納入動態極值風險值模型架構，是否

能改善期貨市場資產風險值估計的精確性。  

實證分析部份，嘗試採用三種常用不同規格之動態極值理論基礎風險值模型加入交

易量 (volume, V) 進行剖析。其中，包含 GARCH、GJR、EGARCH 等三組動態極值風
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險值模型。觀察期間自 1997 年 1 月初至 2001 年 12 月底，而以 NATURAL GAS 期貨、

NASDAQ INDEX 期貨與 S&P 500 INDEX 期貨等三個期貨資產為樣本，採二階段分析

法，首先將交易量納入前述三種常用之動態極值 GARCH 族群模型估計其風險值；其次，

運用回溯測試 (back testing) 計算穿越次數，並輔以均方差根 (RMSE) 評估模型的精確

性。實證結果，發現有考量交易量之模型精確性均優於傳統動態極值理論法；而在三組

模型中，又以 GJR 為最佳。 

 

關鍵詞：動態極值模型、交易量、風險值決定 
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